Experience in using SIMD and MIMD
parallelism for computational fluid dynamics

i
by
g

HI Siman, 1. Bagum /2 Parallelism for compuitational uid dvammics

best match of paralle]l processing technology to the most demanding research applications. In,
the last two vears a number of large scale computational fluid dynamics applications have beeg,
implemented on the two testbed machines, and the potential of the parallel machines for
production use has been evaluated. Bevond that, a systematic performance evaluation effory
has heen initiated (sce [4]), and basic algorithm rescarch has been continued. 1

In this report we will first give a brief description of the capabilities of the parallel machines
at NASA Ames, Then we will discuss some of the research carried out in the implementation|
of computational fluid dynamics (CFD) applications on these parallel machines, We focus here:
on those applications where we have more detailed knowledge because of our own in'-.-m]'-.'u-z
ment: an explicit 2D Euler solver for unstructured grids and a simulation based on p:miclci
methods, Other applications based on structured grids will be mentioned briefly, as well as the!
NAS effort in parallel benchmarking. In a final section we offer some preliminary uum:lu.iium?
on the performance of current parallel machines for CFD applications, as well as the potential
of the different architectures for production use in the future, Another summary of some of the
results from NASA Ames is given by Bailey in [2].

2. Parallel machines at NASA Ames |
20 Conmnectron Machine

The Thinking Machines Connection Machine model CM-2 is a massively parallel SIMD
computer consisting of many thousands of bit serial data processors under the direction of a
front end computer. The system at NASA Ames consists of 32768 bit serial processors each
with | Mbit of memory and operating at 7 MHz. The processors and memory are packaged as
16 in a chip. Each chip also contains the routing circuitry which allows any processor to send
and receive messages from any other processor in the system. In addition, there are 1024 64-bit
Weitek floating point processors which are fed from the hit serial processors through a special
purpose “Sprint” chip, There is one Sprint chip connecting every two CM chips to a4 Wenek.
Euch Weitek processor can execute an add and a multiply each clock cycle, thus performing at
14 Mflops and vielding a peak aggregate performance of 14 Gflops for the system.

The Connection Machine can be viewed two ways, either as an eleven-dimensional hyper-
cube connecting the 2048 CM chips or as a ten-dimensional hypercube connecting the 1024
processing clements. The first view 1s the “fieldwise” model of the machine which has existed
since its introduction. This view admits to the existence of at least 32768 physical processors |
(when using the whole machine) each storing data in fields within its local memory, The sccond i
is the more recent “slicewise™ model of the machine which admits to only 1024 processing
elements (when using the whole machine) each storing data in slices of 32 bits distributed
across the 32 physical processors in the processing clement, Both models allow for “virtual
processing”, where the resources of a single processor or processing element may be divided m{
allow a greater number of virtual processors,

Regardless of the machine model, the architecture allows interprocessor communication 0
proceed in three manners. For very general communication with no regular pattern. the router
determines the destination of messages at run time and directs the messages accordingly, This
15 referred to as general router communication. For communication with an irregular but static

434 H.D. Simore, L. Dagem / Parallelism for orpetational Tudd dvnamics

mMOsL cases i new operation can be initiated every 25-nanosecond clock period. Another
advanced feature is the fact that multiple instructions can be executed in a single clock perind,
For ¢xample, a memory fetch, a floating add, and a floating multiply can all be initiated in 3
single clock period,

A single node of the Touchstone Gamma system consists of the 860, 8 megabytes (MB) of
dynamic random access memory, and hardware for communication to other nodes. For every 16
nodes, there is also a unit service module to facilitate access to the nodes for diagnostie
purposes. The Touchstone Gamma system at NASA Ames consists of 128 computational
nodes. The theoretical peak performance of this system is thus approximately 7.5 Gflops on
td-bit data.

The 128 nodes are arranged in a seven-dimensional hypercube using the direct connect
routing module and the hypercube interconnect technology of the iPSC /2. The point to point
aggregate bandwidth of the interconnect system, which is 2.8 MB /sec per channel, is the same
as on the 1PSC/2. However the latency for the message passing is reduced from about 350
microseconds to about 90 microseconds. This reduction is mainly obtained through the
increased speed of the i860 on the Touchstone Gamma machine, when compared to the Intel
386,/387 on the iPSC /2. The improved latency is thus mainly a product of faster execution of
the message passing software on the 860,

Attached to the 128 computational nodes of the NASA Ames system are ten 170 nodes,
each of which can store approximately 700 MB. The total capacity of the [/0 system is thus
about 7 GB. These 1/0 nodes operate concurrently for high throughput rates. The complete
system 1s controiled by a system resource module (SRM), which is based on an Intel 80386
processor. This system handles compilation and linking of source programs, as well as loading
the executable code into the hypercube nodes and initiating execution. At present the SRM is a
serious bottleneck in the system, due to its slowness in compiling and linking user codes. For
example, the compilation of a moderate-sized application program often requires 30 minutes or
more, even with no optimization options and no other users on the system.

During 1990 the iPSC/860 has been thoroughly investigated at NASA Ames. A first set of
benchmark numbers and some CFD applications performance numbers have been published in
[3]. A more recent summary is given by Barszcz in [5]. As documented in [S] from an overall
systems’' aspect the main bottleneck has been the SRM, which is not able to handle the
demands of a moderately large user community (about 50 to 100 users) in a production
environment. Another important result of the investigations was the outcome of a study by Lee
[15]. Lee’s analysis of the i860 floating point performance indicates that on typical CFD kernels
the best performance to be expected is in the 1-Mflops range. Finally we mention a perfor-
mance study of the I/O system by Lou [19], which measures the I /O performance of the CFS.

3. Structured grid épplications

Structured grid codes, in particular multiblock structured grid codes, are one of the main
production CFD tools at NASA Ames. A number of different efforts were directed toward the
implementation of such capabilities on parallel machines. One of the first CFD results on the
CM-2 was the work by Levit and Jespersen [16,17], which was recently extended to three
dimensions [18]. Their implementation is based on the successful ARC2D and ARC3D codes

|
|
|
|
|

]

436 H.D. Simon, L. Dagum Parallelism for computational Sfluid dynamics

computed by processors associated with vertices. Each edge of the mesh joins a pair of Verticeg
and is associated with one edge of the control volume, ,

One can direct edge (i, j) to determine which vertex in the pair computes the flux through
the shared edge of the control volume, (k’, j'). When there is a directed edge from i to J, thep
the processor holding vertex j sends its conserved values to the processor holding vertex i, ang
the flux across the common control volume edge is computed by processor i and accumulateq
locally. The flux through (k’, j ') computed by the processor holding vertex i is sent to the
processor holding vertex j to be accumulated negatively. Hammond and Barth show that their
vertex-based scheme requires 50% less communication and asymptotically identical amounts of
computation as compared with the traditional edge-based approach.

The state of the system is updated on a per time step basis. A single time step is comprised
on five events:

This decomposition is conceptually pleasing, however in practice the relative slowness of the
Connection Machine router can prove to be a bottleneck in the application. Dagum [8]
introduces several novel algorithms to minimize the amount of communication and improve the
overall performance in such a decomposition. In particular, steps (2) and (3) of the particle
simulation algorithm require a somewhat less then straightforward approach.

The enforcement of boundary conditions requires particles which are about to interact with a
boundary to get the appropriate boundary information from the VP set storing the geometry
data. Since the number of particles undergoing boundary interaction is relatively small, a
master / slave algorithm is used to minimize both communication and computation. In this
algorithm, the master is the VP set storing the particle data. The master creates a slave VP set
large enough to accommodate all the particles which must undergo boundary interactions.
Since the slave is much smaller than the master, instructions on the slave VP set execute much .
faster. This more than makes up for the time that the slave requires to get the geometry
information and to both get and return the particle information.

The pairing of collision partners requires sorting the particle data such that particles
occupying the same cell are represented by neighboring virtual processors in the one-dimen-
sional NEWS grid storing this data. Dagum [9] describes different sorting algorithms suitable
for this purpose. The fastest of these makes use of the realization that the particle data moves
through the CM processors in a manner analogous to the motion of the particles in the
simulation. The mechanism for disorder is the motion of particles, and the extent of motion of
particles, over a single time step, is small. This can be used to tremendously reduce the amount
of communication necessary to re-order the particles.

These algorithms have been implemented in a two-dimensional particle simulation running
on the CM-2. At the time of implementation, the CM-2 at NASA Ames had only 64k bits of

H.D, Simen, L. Dagum / Parallelism for computational flutd dynamics 439

memory per processor which was insufficient to warrant a three-dimensional implementation.
Furthermore, the slicewise model of the machine did not exist and the machine had the slower
32-hit Weiteks which did not carry out any integer arithmetic. Nonetheless, with this smaller
qmount of memory and fieldwise implementation, the code was capable of simulating over
()% 10® particles in a grid with 6.0 % 107 cells at a rate of 2.0 psec/ particle /time step using
all 32k processors (see [8]). By comparison, a fully vectorized equivalent simulation on a single
processor of the Cray YMP runs at 1.0 psec/ particle /time step and 86 Mflops as measured by
the Cray hardware performance monitor. (Note that a significant fraction of a particle
simulation involves integer arithmetic and the Mflop measure is not completely indicative of
the amount of computation involved.) Currently, work is being carried out to extend the
simulation to three dimensions using a parallel decomposition which takes full advantage of the
slicewise model of the machine.

3.2 MIMD implementation of particle simulation

The MIMD implementation differs from the SIMD implementation not so much because of the
difference in programming models but because of the difference in granularity between the
machine models, Whereas the CM-2 has 32768 processors, the iPSC/860 has only 128.
Therefore on the iPSC /860 it is natural to apply a spatial domain decomposition rather than
the data object decomposition used on the CM-2.

In McDonald’s [22] implementation, the spatial domain of the simulation is divided into a
number of subdomains or regions equal to the desired number of node processes. Communica-
tion between processes occurs as a particle passes from one region to another and is carried out
asynchronously, thus allowing overlapping communication and computation. Particles crossing
region “seams’ are treated simply as an additional type of boundary condition. Each simulated
region of space is surrounded by a shell of extra cells that, when entered by a particle, directs
that particle to the neighboring region. This allows the representation of simulated space (i.e.
the geometry definition) to be distributed along with the particles. The aim is to avoid
maintaining a representation of all simulated space which, if stored on a single processor,
would quickly become a serious bottleneck for large simulations, and if replicated would simply
be too wasteful of memory.

Within each region the sequential or vectorized particle simulation is applied. This decompo-
sition allows for great flexibility in the physical models that are implemented since node
processes are asynchronous and largely independent of each other. Recall that communication
between processes is required only when particles cross region seams. This is very fortuitous
since the particle motion is straightforward and fully agreed upon. The important area of
research has to do with the modeling of particles, and since this part of the problem does not
directly affect communication, particle models can evolve without requiring great algorithmic
changes,

McDonald's implementation is fully three-dimensional. The performance of the code on a
3D heat bath is given in Table 2.

At the present time the domain decomposition is static; however work is being carried out to
allow dynamic domain decomposition, thus permitting a good load balance to exist throughout
a caleulation. The geometry and spatial decomposition of the heat bath simulation exaggerated
the area-to-volume ratio of the regions in order to more closely approximate the communica-

440 H.D. Simon, L. Dagum / Parallelism for computational fluicd dynamics

Table 2
Performunce of particle simulation on the Intel iPSC /860
Proces<ors s/ Pt Sstep Milops Efficiency () G
2 244 i5 a7
4 125 6.9 05
8§ 6.35 135 o3
16 325 265 91
12 1.63 528 n
64 0.85 1 &7
128 0.42 215 88
Talbsle 3
Performance comparison of unstructured grid code
Machine Processors secs/step MAops
Cray Y-MF ! 0.39 150.0
Intel 1PSC /860 4 0.33 1773
128 021 278.6
CM-2{32 bit) Bi92 0.72 813
Table 4
Performance comparison of particle simulation code
Machine Processors us,/prt /step Milops
Cray 2 1 20 43
Cray Y-MP 1 1.0 86
Intel iPSC /8601 128 0.4 215
CM-2 (32-hit) 32768 20 43

tion expected in a real application with dynamic load balancing. The most promising feature of
these results is the linear speedup obtained, indicating that the performance of the code should
continue to increase with increasing numbers of processors,

6. Conclusions

On the unstructured grid code the performance figures are summarized in Table 3, where all
Mflops numbers are Cray Y-MP equivalent numbers.

For the particle methods the corresponding summary of performance figures can be found in
Table 4. The figures in Table 4 should be interpreted very carefully. The simulations run on the
different machines were comparable, but not identical. The Mflops are Cray Y-MP equivalent
Mflops ratings based on the hardware performance monitor.

The results in Tables 3 and 4 demonstrate a number of points. Both unstructured grid
computations and the particle simulations are applications which a priori are not immediately

442 H.D. Simon, L. Dagum Parallelism for computational fluid dynamics

[J L. Dagum, Sorting for particle flow simulation on the Connection Machine, in: H.D. Simon, ed., Researcy
Directions in Parallel CFD (MIT Press, Cambridge, MA, 1991).

{10] L. Dagum, Lip leakage flow simulation for the gravity probe B gas spinup using PSiCM, Tech. Repon
RNR-91-10, NASA Ames Research Center, Moffett Field, CA (1991).

[11] E. Denning Dahl, Mapping and compiled communication on the Connection Machine system, in: D.W. Waiker
and Q.F. Stout, eds., Proceedings of the Fifth Distributed Memory Computing Conference (IEEE Computey
Society Press, Los Alamitos, CA, 1990) 756-766.

[12] S. Hammond and T.J. Barth, On a massively parallel Euler solver for unstructured grids, in: H.D. Simon, ed,,
Research Directions in Parallel CFD (MIT Press, Cambridge, MA, 1991).

{13] S. Hammond and R. Schreiber, Mapping unstructured grid problems to the Connection Machine, Tech. Report
90.22, RIACS, NASA Ames Research Center, Moffett Field, CA (1990).

(14] Intel Corporation, i860 64-bit microprocessor programmer’s reference manual, Santa Clara, CA (1990).

[15] K. Lee, On the floating point performance of the i860 microprocessor, Tech. Report RNR-90-019, NASA Ames
Research Center, Moffett Field, CA (1990).

{16] C. Levit and D.C. Jespersen, Explicit and implicit solution of the Navier-Stokes equations on a massively
parallel computer, Tech. Report, NASA Ames Research Center, Moffett Field, CA (1988).

[17] C. Levit and D.C. Jespersen, A computational fluid dynamics algorithm on a massively parallel computer,
Internat. J. Supercomput. Appl. 3 (4) (1989) 9-27.

{18] C. Levit and D.C. Jespersen, Numerical simulation of a flow past a tapered cylinder, Tech. Report RNR-90-20,
NASA Ames Research Center, Moffett Field, CA (1990).

{19] C. Lou, A summary of CFS I /O Tests, Tech. Report RNR-90-20, NASA Ames Research Center, Moffett Field,
CA (1990).

{20] F.E. Lumpkin, Development and evaluation of continuum models for translational-rotational nonequilibrium,
Ph.D. Thesis, Stanford University, Department of Aeronautics and Astronautics, Stanford, CA (1990).

[21] J.D. McDonald, A computationally efficient particle simulation method suited to vector computer architectures,
Ph.D. Thesis, Stanford University, Department of Aeronautics and Astronautics, Stanford, CA (1989).

[22] J.D. McDonald, Particle simulation in a multiprocessor environment, Tech. Report RNR-91-02, NASA Ames
Research Center, Moffett Field, CA (1991).

[23] A. Pothen, H.D. Simon and K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Math.
Anal. Appl. 11 (3) (1990) 430-452.

{24] T.H. Pulliam, Efficient solution methods for the Navier-Stokes equations, Lecture Notes for The Von Karman
Institute for Fluid Dynamics Lecture Series (1986).

[25] R. Schreiber, An assessment of the Connection Machine, Tech. Report 90.40, RIACS, NASA Ames Research
Center. Moffett Fisld CA (100n\]

[26] H.D. Simon, Partitioning of unstructured problems for parallel processing, Tech. Report RNR-91-08, NASA
Ames Research Center, Moffett Field, CA (1991); also: Comput. Systems Engrg. (to appear).

[27] V. Venkatakrishnan, H.D. Simon and T.J. Barth, A MIMD implementation of a parallel euler solver for
unstructured grids, Tech. Report RNR-91-024, NASA Ames Research Center, Moffett Field, CA (1991).

